

ESTUDO DE CARACTERIZAÇÃO NUTRICIONAL E DE FITONUTRIENTES EM VARIEDADES DE MAÇÃ DO OESTE

1. AVALIAÇÃO INSTRUMENTAL DA COR

No Quadro 1, apresentam-se os valores médios e desvio padrão dos parâmetros de cor CIELab, L*, a*, b*, e tonalidade (hº) determinados na casca dos frutos das variedades de maçã Golden Delicious, Granny Smith e Fuji.

Quadro 1 Parâmetros de cor¹ das 3 variedades de maçã em estudo.

Parâmetros de cor		١	/ARIEDADES DE MAÇÃ	
		Golden Delicious	Granny Smith	Fuji
	L*	75.69a ± 2.31	61.96b ± 2.81	44.81c ± 5.30
CIELab	a*	-15.66 ^a ± 2.70	$-20.90^{b} \pm 0.96$	$27.64^{\circ} \pm 6.39$
	b*	$44.81^a \pm 2.03$	42.30b ± 1.96	$23.81^{\circ} \pm 3.72$
Calculado ²	hº	$109.25^{a} \pm 3.23$	116.31b ± 1.04	$41.30^{\circ} \pm 10.25$

Nota 1: Os valores representam média ± DP (n = 90 por variedade) (colorímetro Minolta CR300, iluminante C). Na mesma linha, valores médios com letras iguais não apresentam diferenças significativas a 0.95 (teste Scheffé).

Nota 2: Expressões matemáticas para o cálculo da tonalidade (h°) apresentadas em anexo.

Os resultados numéricos da tonalidade hº das variedades de maçã analisadas expressam variações significativas (p<0,05) (Quadro 1), que se traduzem na percepção sensorial de cor, amarelo (Golden Delicious), verde (Granny Smith) e vermelho (Fuji), característico das mesmas como se observa na Figura 1.

A dispersão dos resultados médios de hº (desvio padrão), maior na variedade Fuji relativamente às restantes, reflecte a maior heterogeneidade da pigmentação característica desta variedade.

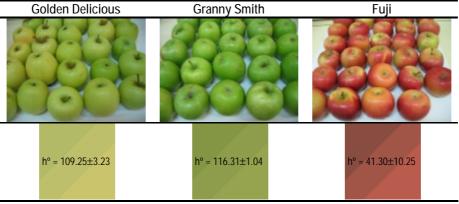


Figura 1 Tradução das coordenadas de cor, expressas em tonalidade (h°), para as variedades de maçã Golden Delicious, Granny Smith e Fuji.

2. Conteúdo Fenólico Total e Capacidade Antioxidante

No Quadro 2 apresentam-se os valores médios e desvio padrão referentes ao quantitativo fenólico total (CFT) e capacidade antioxidante (Cap. AO) registados em extractos obtidos a partir dos frutos inteiros (casca e polpa) das variedades de maçã Golden Delicious, Granny Smith e Fuji.

Quadro 2 Conteúdo fenólico total (CFT) e capacidade antioxidante (Cap. AO) das 3 variedades de maçã em estudo.

	Variedades de Maçã		
	Golden Delicious	Granny Smith	Fuji
CFT (mGAE.100 g-1)	95.0° ± 11.1	97.4° ± 9.1	89.5 ^a ± 4.0
Cap. AO (μmol TEAC.100 g-1)	607.7a ± 69.7	751.7b ± 67.4	659.9a ± 45.0

Nota 1: Os valores representam média ± DP (n = 9, por variedade). Na mesma linha, valores médios com letras

iguais não apresentam diferenças significativas a 0.95 (teste Scheffé).

Nota 2: mGAE – mg equivalentes de ácido gálico.

Nota 3: µmol TEAC – Capacidade antioxidante em micromoles equivalentes de Trolox.

O conteúdo fenólico total obtido para as amostras de maçã (Quadro 2), a variar entre 89.5 e 97.4 mGAE.100 g⁻¹, não traduziu diferenças significativas (p<0.05) entre as 3 variedades em estudo.

A capacidade antioxidante da variedade Granny Smith (751.6 μmol TEAC.100 g⁻¹) revelouse significativamente superior (p<0.05) à das variedades Golden Delicious e Fuji, com resultados estatisticamente iguais (607.7 e 659.9 μmol TEAC.100 g⁻¹, respectivamente).

3. PERFIL FENÓLICO

Na Figura 2, apresentam-se os cromatogramas característicos (HPLC-DAD, λ = 280 nm) da composição fenólica das variedades de maçã Golden Delicious (a), Granny Smith (b) e Fuji (c), tendo a extracção sido efectuada no fruto inteiro (casca e polpa).

a)

b)

c)

Figura 2 Perfil fenólico (cromatogramas a 280 nm) das variedades Golden Delicious (a), Granny Smith (b) e Fuji (c). Identificação numérica dos picos apresenta-se no Quadro 3.

No Quadro 3, apresentam-se os compostos fenólicos que foram detectados nos cromatogramas das variedades de maçã Golden Delicious, Granny Smith e Fuji (Figura 2). Quando a identificação dos compostos resultou da comparação simultânea do tempo de retenção e espectro característicos (relativamente a padrões externos), a quantificação é expressa em mg.100g-1 do respectivo composto. Para os picos que apresentaram apenas correspondência espectral face aos padrões fenólicos, a identificação dos compostos é efectuada relativamente à classe fenólica a que pertencem, não se procedendo nesses casos à respectiva quantificação.

Quadro 3 Compostos fenólicos detectados nas variedades de maçã Golden Delicious, Granny Smith e Fuji.

	Identificação		VARIEDADES DE MAÇÃ			
Pico	Classe	Sub-classe	Composto	Golden Delicious	Granny Smith	Fuji
1	Flavonóide	Flavan-3-ol	ni	nq	nq	nq
2	Flavonóide	Flavan-3-ol	ni	nq	nq	nq
3	Ácido fenólico	Ácido hidroxicinâmico	Ácido clorogénico	7.4±0.9	1.8±0.2	8.1±2.6
4	Ácido fenólico	Ácido hidroxicinâmico	ni	nd	nq	nd
5	Flavonóide	Flavan-3-ol	ni	nq	nq	nq
6	Flavonóide	Flavan-3-ol	ni	nd	nq	nd
7	Flavonóide	Flavan-3-ol	(-)-Epicatequina	3.5±0.2	4.0±1.0	5.4±1.5
8	Ácido fenólico	Ácido hidroxicinâmico	Ácido <i>p</i> -coumárico	Vestigio ^a	Vestigio ^a	Vestigio ^a
9	Flavonóide	Flavan-3-ol	ni	nq	nq	nq
10	Flavonóide	Flavan-3-ol	ni	nq	nq	nd
11	Flavonóide	Flavonol	Rutina	4.2±1.4	6.5±2.7	6.5±2.7
12	Flavonóide	Flavan-3-ol	ni	nq	nq	nq
13	Flavonóide	Flavonol	Quercetina glicolisada ni	nq	nq	nq
14	Flavonóide	Flavanona	Naringina	nq	nq	nq
15	Flavonóide	Flavonol	Quercetina-3-glucosido	2.6±0.6	1.0±0.1	1.5±0.7
16	Flavonóide	Flavona	ni	nq	nq	nq

Nota: Os valores representam a média ± DP (n = 3, por variedade), e são expressos em mg.100g⁻¹; ni – não identificado; nd – não detectado; nq – não quantificado; a – Vestígio (<0.1 mg.100 g⁻¹).

4. CONTEÚDO EM ÁCIDO ASCÓRBICO

No Quadro 4, apresentam-se os valores médios referentes ao conteúdo em ácido ascórbico das variedades de maçã Golden Delicious, Granny Smith e Fuji.

Quadro 4 Conteúdo em ácido ascórbico (vitamina C) das variedades de maçã Golden Delicious, Granny Smith e Fuji.

	Variedades de Maçã		
	Golden Delicious	Granny Smith	Fuji
Ácido ascórbico (mg.100g-1)	3.789±0.223	3.948±1.576	4.490±0.440

Nota: Os valores representam a média \pm DP (n = 3, por variedade).

5. TSS, ACIDEZ E PH

No Quadro 5, apresentam-se os valores médios referentes ao teor de sólidos solúveis (TSS), acidez e pH das variedades de maçã Golden Delicious, Granny Smith e Fuji.

Quadro 5 Teor de sólidos solúveis (TSS), pH e acidez das variedades de maçã Golden Delicious, Granny Smith e Fuji.

	\	√ARIEDADES DE MAÇÃ	
	Golden Delicious	Granny Smith	Fuji
TSS (%, exp. sacarose)	13.050±0.122	13.017±0.117	17.233±0.225
pH NP EN 1132.	4.185±0.002	3.560±0.007	4.038±0.001
Acidez (g ác. málico.100 g-1) pr EN 14130.	0.184±0.001	0.183±0.007	0.109±0.003

Nota: Os valores representam a média \pm DP (n = 3, por variedade).

6. COMPOSIÇÃO CENTESIMAL

No Quadro 6, apresentam-se os valores médios relativos à composição centesimal das variedades de maçã Golden Delicious, Granny Smith e Fuji.

Quadro 6 Composição centesimal das variedades de maçã Golden Delicious, Granny Smith e Fuji.

	Variedades de Maçã		
	Golden Delicious	Granny Smith	Fuji
Humidade (%) NP EN 12145.	84.814±0.057	84.451±0.100	80.100±0.041
Proteína Bruta (%) NP 2030.	0.236±0.007	0.330±0.020	0.184±0.009
Fibra (%) NP 1005.	2.191±0.255	0.792±0.148	0.697±0.145
Gordura Total (%) NP 1613 adaptada.	0.037±0.003	0.039±0.012	0.026±0.004
Cinza Total (%) NP 1615 adaptada.	0.302±0.051	0.210±0.003	0.410±0.045
Hidratos de Carbono (%) TCAP (G. Ferreira, 1961).	12.408±0.326	14.177±0.155	18.583±0.109

Nota: Os valores representam a média \pm DP (n = 3, por variedade).

Lisboa, 29 de Junho de 2007

Os Técnicos Responsáveis

(Marta Abreu)

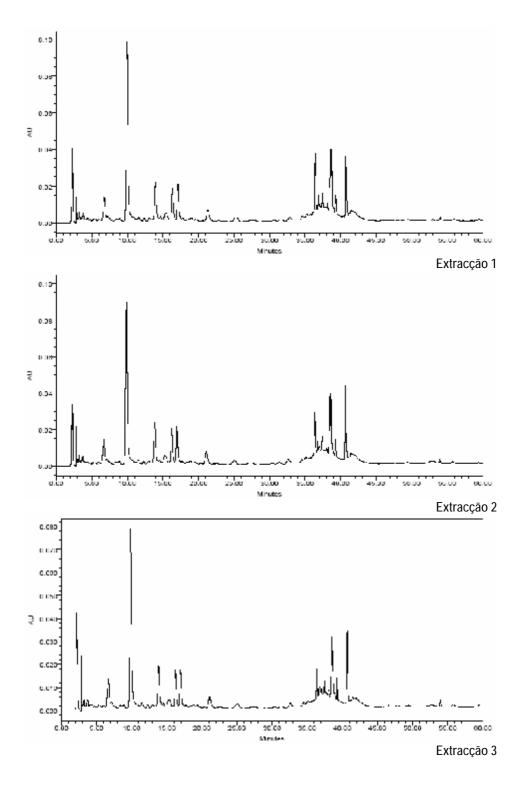
(Elsa Gonçalves)

(Carla Alegria)

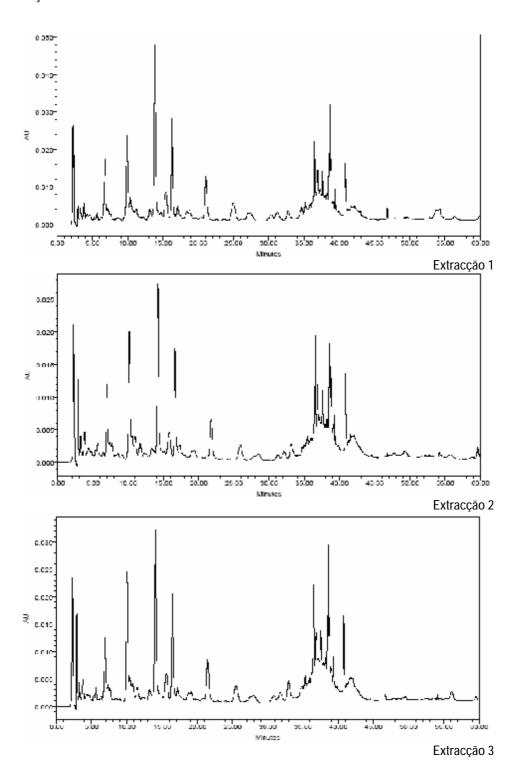
ANEXO 1

O cálculo da tonalidade h^{o} , é realizado de acordo com as seguintes expressões matemáticas:

$$h^{\circ} = \frac{\left(arctg \frac{b^*}{a^*}\right)}{6.2832} x360$$
, se $a^* > 0$ e $b^* > 0$;

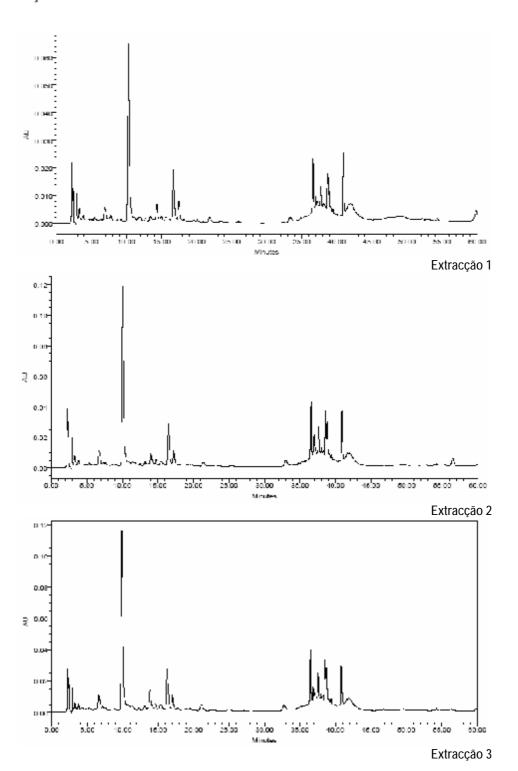

$$h^{\circ} = 180 + \frac{\left(arctg \frac{b^*}{a^*}\right)}{6.2832} x360$$
, se $a^* < 0$;

$$h^{\circ} = 360 + \frac{\left(arctg\frac{b^*}{a^*}\right)}{6.2832}x360$$
, se $a^* > 0$ e $b^* < 0$.


ANEXO 2

Perfil fenólico obtido nas 3 extracções realizadas por variedade (cromatogramas a 280 nm).

1. MAÇÃ GOLDEN DELICIOUS



2. Maçã Granny Smith

3. MAÇÃ FUJI

